Generative imaging and image processing via generative encoder

نویسندگان

چکیده

<p style='text-indent:20px;'>This paper introduces a novel generative encoder (GE) framework for imaging and image processing tasks like reconstruction, compression, denoising, inpainting, deblurring, super-resolution. GE unifies the capacity of GANs stability AEs in an optimization instead stacking into single network or combining their loss functions as existing literature. provides approach to visualizing relationships between latent spaces data space. The is made up pre-training phase solving phase. In former, GAN with generator <inline-formula><tex-math id="M1">\begin{document}$ G $\end{document}</tex-math></inline-formula> capturing distribution given set, AE id="M2">\begin{document}$ E that compresses images following estimated by id="M3">\begin{document}$ are trained separately, resulting two representations data, denoted encoding space respectively. phase, noisy id="M4">\begin{document}$ x = \mathcal{P}(x^*) $\end{document}</tex-math></inline-formula>, where id="M5">\begin{document}$ x^* target unknown image, id="M6">\begin{document}$ \mathcal{P} operator adding addictive, multiplicative, convolutional noise, equivalently such id="M7">\begin{document}$ compressed domain, i.e., id="M8">\begin{document}$ m E(x) unified via problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ z^* \underset{z}{\mathrm{argmin}} \|E(G(z))-m\|_2^2+\lambda\|z\|_2^2 $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>and id="M9">\begin{document}$ recovered way id="M10">\begin{document}$ \hat{x}: G(z^*)\approx id="M11">\begin{document}$ \lambda>0 hyperparameter. unification allows improved performance against corresponding networks while interesting properties each space.</p>

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generative Single Image Reflection Separation

Single image reflection separation is an ill-posed problem since two scenes, a transmitted scene and a reflected scene, need to be inferred from a single observation. To make the problem tractable, in this work we assume that categories of two scenes are known. It allows us to address the problem by generating both scenes that belong to the categories while their contents are constrained to mat...

متن کامل

تحلیل و نقد کتاب The Generative Lexicon

مقالة حاضر به معرفی و نقد کتاب واژگان زایشی اثر جیمز پاستیوسکی می‌پردازد. نظریة واژگان زایشی چهارچوبی را برای نمایش و بازنمود دانش زبانی پیش می‌نهد که بازنمایی‌های معنایی ـ واژگانی عرضه‌شده در آن درواقع بخشی از اطلاعات ذخیره‌شده در واژگان‌اند. در این رویکرد، تلاش بر این است تا کاربرد خلاقانة زبان شرح داده شود و با در‌نظرگرفتن ساختار و سطوح بازنمودیِ چندگانه برای انواع مختلف اطلاعات واژگ...

متن کامل

Cascading Denoising Auto-Encoder as a Deep Directed Generative Model

Recent work (Bengio et al., 2013) has shown how Denoising Auto-Encoders(DAE) become generative models as a density estimator. However, in practice, the framework suffers from a mixing problem in the MCMC sampling process and no direct method to estimate the test loglikelihood. We consider a directed model with an stochastic identity mapping (simple corruption process) as an inference model and ...

متن کامل

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

Generative Adversarial Image Refinement for Handwriting Recognition

Background. Although handwriting recognition and OCR are often considered to be solved problems, state-of-the-art models trained on specific datasets perform very poorly on real world samples. Additionally, publicly available labelled datasets are often very small, leading to difficulties in training deep learning models that typically require a lot of data. There are a number of synthetic hand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inverse Problems and Imaging

سال: 2021

ISSN: ['1930-8345', '1930-8337']

DOI: https://doi.org/10.3934/ipi.2021060